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1Université de Sherbrooke 2Australian National University 3Université de Bourgogne 4Boston University
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Abstract
Change detection is one of the most important low-

level tasks in video analytics. In 2012, we introduced the
changedetection.net (CDnet) benchmark, a video dataset
devoted to the evalaution of change and motion detection
approaches. Here, we present the latest release of the CD-
net dataset, which includes 22 additional videos (∼70, 000
pixel-wise annotated frames) spanning 5 new categories
that incorporate challenges encountered in many surveil-
lance settings. We describe these categories in detail and
provide an overview of the results of more than a dozen
methods submitted to the IEEE Change Detection Workshop
2014. We highlight strengths and weaknesses of these meth-
ods and identify remaining issues in change detection.

1. Introduction
Change (motion) detection is among the most frequently

used preprocessing tasks in a wide variety of applications
such as people counting, traffic video analysis, object track-
ing, mobility monitoring and video retrieval to name just a
few. Most change detection methods attribute a “changed”
label to a pixel whose photometric properties deviate from
those of the background scene.

Even though many approaches perform well when the
camera is static, the illumination is sufficient, the weather
is favorable and the image is artifact-free, it is widely
documented that change detection methods are error-prone
whenever one of the underlying assumptions is violated
[3, 4, 6, 7, 9]. Up until recently, there was no widely ac-
cepted dataset that researchers could rely on to compare
their methodology. The lack of a common benchmark
dataset made it difficult to identify methods that are most
effective in dealing with more general and challenging sce-
narios. Instead, past work often tended to “specialize” on a
particular question, e.g., background motion, unstable light-
ing, and shadows. Moreover, authors often opted to com-
pare their ideas against easily-implementable (and in many
cases outdated) change detection approaches. This caused
an overwhelming attention to be given to a limited number
of outdated methods while marginalizing the more compe-
tent recent ones. Since the performance of a method would
vary from one implementation to another, especially con-

sidering different parametrizations and post-processing op-
tions, it has been very problematic to reproduce the same
results as the ones given in the original paper. The fact that
past work often reported results on nonpublic sequences
made a fair comparison an elusive goal.

To respond to this need, the first version of the changede-
tection.net (CDnet) dataset was released in 2012. The goal
was to provide a balanced dataset depicting various scenar-
ios that are common in change detection. For this, we pre-
pared a dataset of 31 videos (∼90, 000 manually annotated
frames) categorized into 6 challenges. Since each category
is associated with a specific change detection problem, e.g.,
dynamic background, shadows, etc., CDnet enabled an ob-
jective identification and ranking of methods that are most
suitable for a specific problem as well as competent overall.
In addition, we provided an online evaluation facility to help
researchers compare their algorithms with the state-of-the-
art including evaluation tools, pixel-accurate ground-truth
frames and online ranking tables. According to Google An-
alytics, the CDnet website was visited by more than 12, 000
individual users during the last 24 months and results from
34 different methods were uploaded to our system (see the
2012 results section on the CDnet website). We received
very positive comments and several suggestions for further
improvement.

Given this feedback, we prepared a second version of the
dataset: the 2014 CDnet. It includes 22 additional videos in
5 new categories. In the remainder of the paper, we pro-
vide an overview of the existing change detection datasets
as well as survey papers, and summarize the 2012 CDnet
dataset. Then, we present the 2014 CDnet dataset. We dis-
cuss its categories, ground-truth annotations, performance
metrics, and a summary of the comparative rankings of the
methods that competed in the Change Detection Workshop
(CDW) held in conjunction with CVPR 2014.

2. Previous Work
2.1. Datasets and Surveys

Several datasets have been used in the past to evaluate
change detection algorithms. We list 18 of those datasets in
Table 1. Of these datasets, seven have been initially devel-
oped to validate tracking and pattern recognition methods
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Dataset Description Ground truth
Wallflower [27] 7 short video clips, each representing a specific challenge such

as illumination change, background motion, etc
Pixel-based labeling of one frame
per video.

PETS [31] Many videos aimed at evaluating tracking algorithms Bounding boxes.
CAVIAR 80 staged indoor videos representing different human behav-

iors such as walking, browsing, shopping, fighting, etc.
Bounding boxes.

i-LIDS Long videos meant for action recognition. Shows parked vehi-
cles, abandoned objects, walking people, doorways

Not fully labeled.

ETISEO More than 80 videos meant to evaluate tracking and event de-
tection methods.

High-level labels such as bounding
box, object class, event type.

ViSOR 2009 [29] Web archive with 500 short videos (most less than 10 seconds) Bounding boxes.
BEHAVE 2007 7 videos shot by the same camera showing human interactions

such as walking in group, meeting, splitting, etc.
Bounding boxes.

VSSN 2006 9 semi-synthetic videos composed of a real background and
artificially-moving objects. The videos contain animated back-
ground, illumination changes and shadows.

Pixel-based labeling of each frame.

IBM 15 videos taken from PETS 2001 plus additional videos. Bounding box around each moving
object in 1 frame out of 30.

Karlsruhe 4 grayscale traffic videos under various weather conditions. 10 frames/video Pixel-wise labels.
Li et al.[12] 10 short videos with illumination changes and dynamic back. 10 frames/video Pixel-wise labels.
Karaman [11] 5 videos from different sources (web, “art live” project, etc.)

with various illuminations and compression artifacts
Pixel-wise labels of each frame.

cVSG [26] 15 Semi-synthetic videos with various levels of textural com-
plexity, background motion, moving object speed, size and in-
teraction.

Pixel-wise labeling by filming mov-
ing objects in front of a blue-screen
pasted on background videos.

LIMU 8 simple videos, some borrowed from PETS2001. Pixel-wise labeling, 1 out of 15
frames.

UCSD 18 short videos with background motion and/or camera motion. Pixel-wise labeling.
SZTAKI 5 indoor/outdoor videos with shadows Pixel-wise labeling of foreground,

shadows for a subset of frames .
BMC 2012 [28] 29 outdoor videos, most being synthetic. Pixel-wise labeling for 10 synthetic

and 9 real videos. Labeling of
real videos is for a small subset of
frames.

Brutzer et al. [7] Computer-generated videos showing a street corner. Includes
illumination changes, dynamic background, shadows, noise.

Pixel-wise labeling.

Table 1. Overview of 18 video databases often used to validate change detection methods.

(namely PETS, CAVIAR, i-LIDS, ETISEO, ViSOR 2009,
BEHAVE 2007, IBM). Although these datasets are chal-
lenging for these applications, they only contain day-time
videos with fixed background, constant illumination, few
shadows and no camera jitter. Other datasets contain syn-
thetic or semi-synthetic videos (VSSN 2006, cVSG, BMC
2012, and Brutzer et al.) whose content is not always realis-
tic. The remaining datasets either contain a limited number
of videos or focus on one specific type of action, e.g., indoor
human actions or motor traffic scenes. As a consequence, it
is difficult to evaluate how robust motion detection methods
are when looking at the results reported on these datasets.
More details on these datasets can be found in [9].

A number of survey papers have been written on the
topic of motion detection (Table 2). Note that, some of
these surveys use the benchmark videos, while others use
their own, non-public datasets. Although they provide a
good overview of existing methods, the statistics reported
in these surveys have not been computed on a general, unbi-
ased, balanced dataset composed of real (camera-captured)
videos. Most of these studies report fairly simple motion
detection methods and do not discuss the performance of
recent (and more complex) solutions.

Let us mention the 2014 handbook by Bouwmans et
al [6] which, to our knowledge, is the most complete
manuscript devoted to change detection recently published.
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Survey Description and Benchmark
Bouwmans et al., 2011 [4] Potentially the most complete survey to date with more than 350 references. The paper

reviews methods spanning 6 motion detection categories and the features used by each
method. It provides benchmarking results on the Wallflower dataset.

Benezeth et al., 2010 [3] Survey presenting benchmarking results obtained on 29 videos (15 camera-captured,
10 semi-synthetic, and 4 synthetic) taken from PETS 2001, the IBM dataset, and the
VSSN 2006 dataset.

Nascimento-Marques, 2006 [17] Contains benchmarks obtained on a single PETS 2001 video with pixel-based labeling.
Prati et al., 2001 [21] Contains benchmarks of indoor sequences containing one moving person. 112 frames

were labeled.
Parks and Fels, 2008 [19] Results for 7 motion detection methods and evaluation of post-processing on their per-

formance. They used 7 outdoor and 6 indoor videos containing different challenges
such as dynamic backgrounds, shadows and various lighting conditions.

Bashir and Porikli, 2006 [2] Performance evaluation of tracking algorithms using the PETS 2001 dataset by com-
paring the detected bounding box locations with the ground-truth.

Bouwmans et al., 2008 [5] Survey of GMM methods. Provides benchmarking results on the Wallflower dataset.
Radke et al., 2005 [23] Extensive survey of several motion detection methods. Most of the discussion in the

paper was related to background subtraction methods, pre- and post-processing, and
methodologies to evaluate performances. Contains no quantitative evaluation.

Piccardi, 2004 [20] Review of 7 background subtraction methods which highlights their strengths and
weaknesses. Contains no quantitative evaluation.

Rosin-Ioannidis, 2003 [24] Report results for 8 method with home-made videos showing balls rolling on the floor.
Brutzer et al., 2011 [7] Survey which reports benchmarking results for 8 motion detection method on the

computer-generated Brutzer 2011 dataset.

Table 2. 11 change detection survey papers.

2.2. CDnet 2012 Dataset

The 2012 dataset was composed of nearly 90,000 frames
in 31 video sequences representing various challenges di-
vided into 6 categories ( Fig. 1):

1. Baseline contains 4 videos with a mixture of mild chal-
lenges of the next 4 categories. These videos are fairly
easy and are provided mainly as reference.

2. Dynamic Background contains 6 videos depicting
outdoor scenes with strong background motion.

3. Camera Jitter represents 4 videos captured with un-
stable cameras.

4. Shadow is composed of 6 videos with both strong and
soft moving and cast shadows.

5. Intermittent Object Motion contains 6 videos with
scenarios known for causing ghosting artifacts (e.g.
contains still objects that suddenly start moving).

6. Thermal is composed of five videos captured by far-
infrared cameras.

The results of the CDW-2012 workshop brought to light
a number of interesting findings and helped pinpoint critical
unresolved issues in motion and change detection. Our key
findings from the 2012 workshop include the following:

1. Contrary to popular belief, videos with small recurrent
background motion (ripples on the water, trees shaken
by the wind) do not pose a significant challenge (any
more). This conclusion applies to baseline videos.

2. None of the methods tested is robust to hard shad-
ows, ghosting artifacts, intermittent motion, and cam-
ouflage. These are open issues that are yet to be solved.

3. Contrary to common belief, detecting humans and
moving objects in thermal videos is not trivial. It is
often accompanied by heat reflections and camouflage
effects that no method handles well.

4. An interesting finding is that methods appear to be
complementary in nature: the best-performing meth-
ods can be beaten by combining several of them with
a majority vote. This suggests that future research
should consider modular change detection methods
that incorporate a combination of several complemen-
tary change detection strategies.

5. The f-measure correlates most strongly with the aver-
age rankings produced by our evaluation algorithm.

Detailed findings of CDW-2012 can be found in [9].

3. Extended CDnet 2014 Dataset
Guided by the feedback from other researchers, we pre-

pared a new set of videos representing 5 additional cate-
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Baseline Camera Jitter Dynamic Back. Interm. Motion Shadow Thermal

Bad Weather Low Framerate Night Video PTZ Turbulence

Figure 1. Sample video frames from each of the 11 categories in the new dataset available at www.changedetection.net. The
categories in the first row exist in both 2012 and 2014 dataset while the ones in the second row only exist in 2014 dataset.

gories incorporating challenges not addressed in the 2012
CDnet dataset. In total, more than 70, 000 frames have been
captured, and then manually segmented and annotated by a
team of 13 researchers from 7 universities.

The 2014 CDnet dataset provides realistic, camera-
captured (without CGI), diverse set of indoor and out-
door videos like the 2012 CDnet. These videos have
been recorded using cameras ranging from low-resolution
IP cameras, higher resolution consumer grade camcorders,
commercial PTZ cameras to near-infrared cameras. As a
consequence, spatial resolutions of the videos in the 2014
CDnet vary from 320×240 to 720×486. Due to the di-
verse lighting conditions present and compression param-
eters used, the level of noise and compression artifacts sig-
nificantly varies from one video to another. Duration of the
videos are from 900 to 7,000 frames. Videos acquired by
low-resolution IP cameras suffer from noticeable radial dis-
tortion. Different cameras have different hue bias due to dif-
ferent white balancing algorithms employed. Some cameras
apply automatic exposure adjustment resulting in global
brightness fluctuations in time. Frame rate also varies from
one video to another, often as a result of limited bandwidth.
Since these videos have been captured under a wide range of
settings, the extended 2014 CDnet dataset does not favour a

certain family of change detection methods over others.

3.1. Video Categories

There are 5 new categories as shown in Fig. 1. Similarly
to the 2012 dataset, the change detetion challenge in a cate-
gory is unique to that category. Such a grouping is essential
for an unbiased and clear identification of the strengths and
weaknesses of different methods. These categories are:

Challenging Weather: This category contains 4 outdoor
videos showing low-visibility winter storm conditions. This
includes two traffic scenes in a blizzard, cars and pedes-
trians at the corner of a street and people skating in the
snow. These videos present a double challenge: in addi-
tion to snow accumulation, the dark tire tracks left in the
snow have potential to cause false positives.

Low Frame-Rate: In this category 4 videos, all recorded
with IP cameras, are included. The frame rate varies from
0.17 fps to 1 fps due to limited transmission bandwidth.
By nature, these videos show “erratic motion patterns” of
moving objects that are hard (if not impossible) to corre-
late. Optical flow might be ineffective for these videos. One
sequence is particularly challenging (port 0 17fps), which
shows boats and people coming in and out of a harbour, as
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the low framerate accentuates the wavy motion of moored
boats causing false detections.

Night: This category has 6 motor traffic videos. The main
challenge is to cope with low-visibility of vehicles yet their
very strong headlights that cause over saturation. Head-
lights cause halos and reflections on the street.

PTZ: We included 4 videos in this category: one video
with a slow continuous camera pan, one video with an inter-
mittent pan, one video with a 2-position patrol-mode PTZ,
and one video with zoom-in/zoom-out. The PTZ category
by itself requires different type of change detection tech-
niques in comparison to static camera videos.

Air Turbulence: This category contains 4 videos show-
ing moving objects depicted by a near-infrared camera at
noon during a hot summer day. Since the scene is filmed at
a distance (5 to 15 km) with a telephoto lens, the heat causes
constant air turbulence and distortion in frames. This results
in false positives. The size of the moving objects also varies
significantly from one video to another. The air turbulence
category presents very similar challenges to those arising in
long-distance remote surveillance applications.

3.2. Ground-Truth Labels

For consistency, we use the same labels as those in the
2012 CDnet dataset. Each frame has been manually anno-
tated at pixel level, with the following 5 labels:

1. Static pixels are assigned grayscale value of 0.
2. Shadow pixels are assigned grayscale value of 50. The

Shadow label is associated with hard and well-defined
moving shadows such as the one in Fig. 2.

3. Non-ROI1 pixels (i.e. outside of the ROI) are assigned
grayscale value of 85. The first few hundred frames of
each video sequence are labelled as Non-ROI to pre-
vent the corruption of evaluation metrics due to errors
during initialization. The Non-ROI label prevents also
the metrics from being corrupted by activities unre-
lated to the category considered.

4. Unknown grayscale value of 170 assigned to pixels
that are half-occluded or corrupted by motion blur.

5. Moving pixels are assigned grayscale value of 255.

Please note that the evaluation metrics discussed in Sec-
tion 3.3 consider the Shadow pixels as Static pixels.

3.3. Evaluation Metrics

As in 2012, results are presented by reporting the aver-
age performance of each method, for each video category
with respect to 7 different performance metrics [9]. Let
TP be the number of true positives, TN the number of true
negatives, FN the number of false negatives, and FP the

1ROI stands for Region Of Interest.

Figure 2. Sample frames showing 5-class ground-truth label fields.

number of false positives. For each method and each video
category, the following 7 metrics are computed:

1. Recall (Re): TP/(TP+FN)

2. Specificity (Sp): TN/(TN+FP )

3. False Positive Rate (FPR): FP/(FP+TN)

4. False Negative Rate (FNR): FN/(TN+FP )

5. Percentage of Wrong Classifications (PWC):
100(FN+FP )/(TP+FN+FP+TN)

6. Precision (Pr): TP/(TP+FP )

7. F -measure (or F1 score): 2 Pr·Re
Pr+Re

For the Shadow category, we also provide an average
FPR that is confined to the hard-shadow areas (FPR-S).

In order to easily assess the various change detection
methods, these metrics are then combined into two metrics
R and RC [9]. R represents an average ranking computed
across all overall-average metrics. RC is an average rank-
ing computed across all categories. Results with R and RC
are also presented in Table 3.

4. Methods Tested
A total of 14 change detection methods were evaluated

for the IEEE Change Detection Workshop 2014 [1]. Of
these, 3 are relatively simpler methods that rely on plain
background subtraction and two of these use color fea-
tures: the Euclidean and Mahalanobis distance methods as
described in [3]. Two methods are older but frequently-
cited: KDE-based estimation by Elgammal et al. [8] and
GMM by Stauffer and Grimson [25]. We also include a
K-nearest neighbor (KNN) method as well as a recursive
GMM method with an improved update of the Gaussian
parameters and an automatic selection of the number of
modes [32].

Among the more recent methods is FTSG [22] which
uses a three-step procedure consisting of 1) moving object
detection with two complementary pixel-level motion de-
tection methods based on the trace of a flux tensor and a
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Method RC R Re Sp FPR FNR PWC F-Measure Pr
Majority Vote-3 1.55 2.14 0.76 0.99 0.0054 0.24 1.31 0.75 0.81
FTSG [22] 1.82 2.14 0.77 0.99 0.0078 0.23 1.38 0.73 0.80
SuBSENSE [18] 2.36 2.71 0.81 0.99 0.0116 0.19 1.84 0.73 0.75
Majority Vote-all 4.00 7.29 0.66 0.99 0.0112 0.34 2.15 0.64 0.74
CwisarDH [10] 4.00 4.57 0.66 0.99 0.0052 0.34 1.53 0.68 0.77
Spectral-360 [16] 5.36 5.43 0.73 0.99 0.0139 0.27 2.27 0.67 0.71
Bin Wang Apr 2014 [30] 7.27 6.71 0.70 0.98 0.0206 0.30 2.90 0.66 0.72
KNN [32] 7.91 8.14 0.67 0.98 0.0198 0.34 3.32 0.59 0.68
SC-SOBS [15] 8.45 8.29 0.76 0.95 0.0453 0.24 5.15 0.60 0.61
KDE-ElGammal [8] 9.36 10.43 0.74 0.95 0.0481 0.26 5.63 0.57 0.58
Mahalanobis distance [3] 9.82 8.86 0.16 0.99 0.0069 0.84 3.48 0.23 0.74
GMM Stauffer-Grimson [25] 10.36 9.14 0.68 0.98 0.0250 0.32 3.77 0.57 0.60
CP3-online [13] 10.82 9.14 0.72 0.97 0.0295 0.28 3.43 0.58 0.56
GMM Zivkovic [32] 11.27 11.43 0.66 0.97 0.0275 0.34 4.00 0.56 0.60
Multiscale Spatio-Temp BG Model [14] 12.45 12.71 0.66 0.95 0.0458 0.34 5.55 0.51 0.55
Euclidean distance [3] 13.82 13.00 0.68 0.94 0.0551 0.32 6.54 0.52 0.55

Table 3. Overall results across all categories (RC: average ranking across categories, R: average overall ranking).

variant of the conventional GMM, 2) fusion motion detec-
tion results, and 3) removal of ghosting artifacts. In SuB-
SENSE [18], color and local binary similarity patterns are
used to make pixel-level decisions with automatic adjust-
ment of tuning parameters for locally adapting to chang-
ing input. CwisarDH [10] uses a neural network where a
random collection of the previous values of a pixel consti-
tutes a random access memory node and the responses of
such nodes are aggregated to compute a discriminator re-
sponse. Maddalena and Petrosino’s SC-SOBS method [15]
also uses machine learning but with a self-organizing neural
map. Spectral-360 [16] is based on the correlation between
the diffuse spectral reflectance components of a new video
frame and an evolving background model derived from re-
cent training frames. The method of [30] compares the cur-
rent pixel value with one long-term and several short-term
adaptive templates that are discarded based on a measure
of efficacy rather than age or random selection. For CP3-
online [13], instead of modeling the background model for
each pixel individually, they model the color distribution
of pixels with strong spatial correlation. The authors ar-
gue that such spatial model is robust to sudden illumination
changes. A multiresolution approach to background sub-
traction is developed in [14] using a 3-scale spatio-temporal
color/luminance Gaussian pyramid background model and
a system of pixel neighborhoods at each scale.

For each method, only one set of parameters was used for
all the videos. These parameters were selected according to
the authors’ recommendations or, when not available, were
adjusted to enhance the overall results. All parameters are
available on the CDW-2014 website.

Figure 3. Mean and σ of the F-Measure over all methods.

5. Experimental Results
In order to give the reader an intuitive understanding of

the overall performance of all 14 methods, we put in Fig. 3
the mean and standard deviation of the F-measure for all
methods within each category. Without much surprise, the
PTZ category has the lowest performance. The second most
difficult category is the night videos, followed by the low
framerate and turbulence. Surprisingly, every method per-
formed relatively well on the bad weather videos. Overall,
the performance obtained on the 2014 categories is lower
than for the 2012 categories. We also report the median
metrics obtained by all methods in the new 5 categories as
shown in Table 4.

In Table 3, we report the overall results for all 14 meth-
ods, which we sorted according to their average ranking
across categories (RC). We also report results obtained after
combining all the methods (Majority Vote-all) and the top 3
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Category F-Measure FPR FNR PWC
Bad Weather 0.74 0.0018 0.32 0.76
Low Framerate 0.54 0.0058 0.35 1.34
Night Videos. 0.41 0.0304 0.42 4.95
PTZ 0.14 0.1149 0.34 11.79
Turbulence 0.50 0.0069 0.25 0.82

Table 4. Median F-Measure, FPR, FNR and PWC obtained by all
14 methods for each category.

Category 1st 2nd 3rd

Baseline SC-SOBS SuBSENSE CwisarDH
Dynamic FTSG Bin Wang CwisarDH
Camera Jitter CwisarDH SuBSENSE FTSG
Intermittent FTSG Bin Wang SuBSENSE
Shadow FTSG SuBSENSE CwisarDH
Thermal FTSG CwisarDH KDE
Bad Weather FTSG SuBSENSE Bin Wang
Low Framerate FTSG SuBSENSE Spectral-360
Night Videos SuBSENSE FTSG Spectral-360
PTZ FTSG SuBSENSE CwisarDH
Turbulence SuBSENSE Bin Wang FTSG

Table 5. Three best methods for each category

methods FTSG, SuBSENSE and CwisarDH (Majority Vote-
3). We did so with a pixel-based majority vote. As one can
see, even by combining basic methods, Majority Vote-all
outperforms every method except FTSG and SuBSENSE.
As for Majority Vote-3, it outperforms every other motion
detection method. This is a strong indication that no single
method decisively outperforms other ones. On the contrary,
these methods seam complementary by nature. Table 5 un-
derlines a similar conclusion since no method is systemati-
cally the best in each category.

In order to identify where the methods fail, we integrated
the error at each pixel of each frame and for every method.
This led to error maps similar to the ones shown in Fig 4. In
these images, red, green, white and black stand for the false
negative, false positive, true positive and true negative, re-
spectively. Pixels with saturated red and green indicate that
every method failed at those pixels. After analyzing these
error maps, we came to identify the most glaring issues that
no single method handles well:

1. PTZ: any camera motion (pan, tilt or zoom) causes
major false positives.

2. Night Videos: the lack of illumination causes numer-
ous false negatives while headlight reflections cause
systematic false positives.

3. Shadow: Hard shadows are still a challenge for every
method.

4. Intermittent Object Motion: Any object which stops
moving for some time, eventually ends up being mis-

detected. A similar situation occurs when a back-
ground object is removed from the scene.

5. Turbulence: Air turbulence causes the systematic oc-
currence of false positives.

We also compare the results for the 6 categories which
are included in both the 2012 and 2014 dataset. For each
category, we took the average performance of the top 4
methods reported on the 2012 dataset and the 2014 dataset
(see the results section on the CDnet website). By doing
this, we wanted to see if the 2012 methods which had to
process only these 6 categories were doing better than those
that had to account for 11 categories. As shown in Table 6,
except for the camera jitter category for which the 2012
methods are more accurate, the results obtained by the 2012
and 2014 methods are very similar.

Acknowledgements
We thank Shaozi Li, Weiyuan Zhuang, Yaping You,

Lucas Liang, and Luke Sorenson for manual ground-
truthing, Marc Vandroogenbroeck for providing a PTZ
video, Oognet.pl for providing free access to their survail-
lance cameras, and Dotan Asselmann for providing turbu-
lence videos and helping with manual ground-truthing.
References
[1] 2nd IEEE Change Detection Workshop, 2014, in conjunction with

CVPR. www.changedetection.net. 5
[2] F. Bashir and F. Porikli. Performance evaluation of object detection

and tracking systems. In Proc. IEEE Int. Workshop on Performance
Evaluation of Tracking Systems, 2006. 3

[3] Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger.
Comparative study of background subtraction algorithms. J. of Elec.
Imaging, 19(3):1–12, 2010. 1, 3, 5, 6

[4] T. Bouwmans. Recent advanced statistical background modeling for
foreground detection: A systematic survey. Recent Patents on Com-
puter Science, 4(3), 2011. 1, 3

[5] T. Bouwmans, F. E. Baf, and B. Vachon. Background modeling using
mixture of gaussians for foreground detection: A survey. Recent
Patents on Computer Science, 1(3):219–237, 2008. 3

[6] T. Bouwmans, F. Porikli, B. Hferlin, and A. Vacavant. Background
Modeling and Foreground Detection for Video Surveillance. Chap-
man and Hall/CRC, 2014. 1, 2

[7] S. Brutzer, B. Hoferlin, and G. Heidemann. Evaluation of back-
ground subtraction techniques for video surveillance. In Proc. IEEE
Conf. Computer Vision Pat. Recog., pages 1937–1944, 2011. 1, 2, 3

[8] A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis. Back-
ground and foreground modeling using nonparametric kernel density
for visual surveillance. Proc. IEEE, 90:1151–1163, 2002. 5, 6

[9] N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar.
Changedetection.net: A new change detection benchmark dataset.
In IEEE CVPR change detection workshop, 2012. 1, 2, 3, 5

[10] M. D. Gregorio and M. Giordano. Change detection with weightless
neural networks. In IEEE Workshop on Change Detection, 2014. 6

[11] M. Karaman, L. Goldmann, D. Yu, and T. Sikora. Comparison of
static background segmentation methods. In Proc. SPIE Visual Com-
munications and Image Process., pages 2140–2151, 2005. 2

[12] L. Li, W. Huang, I. G. Yu-Hua, and Q. Tian. Statistical modeling of
complex backgrounds for foreground object detection. IEEE Trans.
Image Process., 13(11):1459–1472, 2004. 2

[13] D. Liang and S. Kaneko. Improvements and experiments of a com-
pact statistical background model, 2014. 6

399



PTZ Night Video Shadow Int. motion Turbulence

Figure 4. Error maps showing systematic errors. Red: false positives, green: false negatives, white: true positives and black: true negatives.

Category Year Re Sp FPR FNR PWC F-Measure Pr

Baseline 2012 0.92 1.00 0.0021 0.08 0.42 0.93 0.94
2014 0.94 1.00 0.0022 0.06 0.45 0.93 0.93

Dynamic Background 2012 0.87 1.00 0.0017 0.13 0.28 0.84 0.84
2014 0.85 1.00 0.0018 0.15 0.35 0.84 0.86

Camera Jitter 2012 0.79 0.99 0.0090 0.21 1.65 0.80 0.85
2014 0.77 0.99 0.0132 0.23 2.12 0.75 0.76

Intermittent Motion 2012 0.74 0.98 0.0185 0.26 3.24 0.69 0.75
2014 0.69 0.99 0.0089 0.31 3.21 0.68 0.79

Shadow 2012 0.92 0.99 0.0091 0.08 1.19 0.87 0.84
2014 0.91 0.99 0.0092 0.09 1.26 0.87 0.84

Thermal 2012 0.69 1.00 0.0028 0.31 1.86 0.75 0.93
2014 0.71 1.00 0.0049 0.29 1.53 0.77 0.90

Table 6. Comparison of methods tested in CDW-2012 and CDW-2014 on the original categories. For each category, the top 4 methods are
used to represent its performance.

[14] X. Lu. A multiscale spatio-temporal background model for motion
detection. In Proc. IEEE Int. Conf. Image Processing, 2014. 6

[15] L. Maddalena and A. Petrosino. The SOBS algorithm: what are the
limits? In IEEE Workshop on Change Detection, 2012. 6

[16] M. M.Sedky and C. C. Chibelushi. Spectral-360: A physical-based
technique for change detection. In IEEE Workshop on Change De-
tection, 2014. 6

[17] J. Nascimento and J. Marques. Performance evaluation of object
detection algorithms for video surveillance. IEEE Trans. Multimedia,
8(8):761–774, 2006. 3

[18] G.-A. B. P-L St-Charles and R. Bergevin. Flexible background sub-
tractionwith self-balanced local sensitivity. In IEEE Workshop on
Change Detection, 2014. 6

[19] D. Parks and S. Fels. Evaluation of background subtraction algo-
rithms with post-processing. In Proc. IEEE Int. Conf. on Advanced
Video and Signal-based Surveillance, pages 192–199, 2008. 3

[20] M. Piccardi. Background subtraction techniques: a review. pages
3099–3104, 2004. 3

[21] A. Prati, R. Cucchiara, I. Mikic, and M. Trivedi. Analysis and detec-
tion of shadows in video streams: A comparative evaluation. In Proc.
IEEE Conf. Computer Vision Pat. Recog., pages 571–577, 2001. 3

[22] G. S. R. Wang, F. Bunyak and K. Palaniappan. Static and moving
object detection using flux tensor with split gaussian models. In IEEE
Workshop on Change Detection, 2014. 5, 6

[23] R. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Image change
detection algorithms: A systematic survey. IEEE Trans. Image Pro-
cess., 14:294–307, 2005. 3

[24] P. Rosin and E. Ioannidis. Evaluation of global image thresholding
for change detection. Pattern Recog. Lett., 24:2345–2356, 2003. 3

[25] C. Stauffer and E. Grimson. Learning patterns of activity using real-
time tracking. IEEE Trans. Pattern Anal. Machine Intell., 22(8):747–
757, 2000. 5, 6

[26] F. Tiburzi, M. Escudero, J. Bescos, and J. Martinez. A ground
truth for motion-based video-object segmentation. In Proc. IEEE
Int. Conf. Image Processing, pages 17–20, 2008. 2

[27] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Prin-
ciples and practice of background maintenance. In Proc. IEEE Int.
Conf. Computer Vision, volume 1, pages 255–261, 1999. 2

[28] A. Vacavant, T. Chateau, A. Wilhelm, and L. Lequievre. A bench-
mark dataset for outdoor foreground/background extraction. In
ACCV Workshops, pages 291–300, 2012. 2

[29] R. Vezzani and R. Cucchiara. Video surveillance online repository
(visor): an integrated framework. Multimedia Tools and Applica-
tions, 50(2):359–380, 2010. 2

[30] B. Wang and P. Dudek. A fast self-tuning background subtraction
algorithm. In IEEE Workshop on Change Detection, 2014. 6

[31] D. Young and J. Ferryman. PETS metrics: Online performance eval-
uation service. In Proc. IEEE Int. Workshop on Performance Evalu-
ation of Tracking Systems, pages 317–324, 2005. 2

[32] Z. Zivkovic and F. V. D. Heijden. Efficient adaptive density estima-
tion per image pixel for the task of background subtraction. Pattern
Recog. Lett., 27:773–780, 2006. 5, 6

400


